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Indicator of chaos based on the Riemannian geometric approach
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Using the Riemannian geometric approach to Hamiltonian systems, we show that the empirical indicator of
chaos proposed by Kosloff and Rick Chem. Phys74, 1947(1981)], an improved version of the well-known
Toda-Brumer criterion, is equivalent to sectional curvature of the Jacobi equation when the Eisenhart metric is
chosen for the Riemannian manifold. Further, we present a relation among the sectional curvature, the
Lyapunov exponents, and the Kolmogorov-Sinai entropy. By using this relation, the empirical indicator by
Kosloff and Rice, which is local, can be used as a global indicator of chaos.
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A study on the stability of dynamical systems has beerfirmed for the two-dimensional Hamiltonian systems such as
extensively done to find the methods and the criteria fotthe Hénon-Heiles systefid], the homogeneous Yang-Mills-
determining the onset of chaotic motion in the HamiltonianHiggs systeni8] and the Abelian-Higgs systef8].
system since the pioneer work by Todd and Brumer{2]. The purpose of this paper is to show that the ITB criterion
The Toda-Brumer(TB) criterion for the onset of chaos is can be understood from the framework of the Riemannian
based on local instability due to separation of neighboringgeometric approach. Indeed, it is shown that the indicator of
trajectories in phase space. The instability of these trajectachaos used in the ITB criterion is equivalent to the sectional
ries relates closely to the sign of the Gaussian curvature cfurvature of the Jacobi equation in the Riemannian geomet-
the potential function of the systefd]. Owing to its sim-  ric approach when the Eisenhart metric is chosen. From this
plicity, this criterion has been widely used to predict theequivalence we can explain the reason why the original TB
critical value for intramolecular energy transf@] and sev-  criterion does not necessarily work well. Furthermore, we
eral chemical systems] in chemical dynamics as well as point out an interesting relation among the sectional curva-
the threshold energy for the onset of chaos in dynamicajure, the Lyapunov exponents and the Kolmogorov-Sinai
systemg4,5]. However it is also known that the TB criterion (KS) entropy that connects the ITB criterion to a global in-
sometimes fails to correctly predict these values. dicator of chaos.

In order to remove this defect in the TB criterion, it is Let us start by briefly reviewing the TB criterigi, 2],
necessary to impose stronger conditions to specify the trajegvhich is derived by the analysis of the linear stability of
tories responsible for chaotic motion. Based on the observarajectories. For the Newtonian system with two degrees of
tion that chaotic motion occurs by the trajectory which di- freedom as
verges in the direction perpendicular to the flow in phase -
space, which is found by the analysis of the Hénon-Heiles aq - M (i=1,2 (1)
system, Kosloff and Rice have proposed an empirical indi- dt? aq' Y
cator of chaos, i.e., an improved version of the Toda-Brume
criterion[6]. This improved TB(ITB) criterion seems to be
very effective for two-dimensional Hamiltonian systems to
obtain the precise information about the onset of chaos. The d?é i PV
degree of chaos is characterized by the quantity related to the ae +me=0, my= m (2)
curvature of the potential energy surface perpendicular to the
trajectory. The ITB criterion is, however, introduced in anWwhereV is the potential energy function of the system. The
empirical way so that its base is not clear from the viewpointstability of the motion is determined by the eigenvalues of
of both physics and mathematics. the stability matrix with elementsy;. The eigenvalues are

Recently there has been much attention to investigation \.=h+ -G 3)
about Hamiltonian chaos from the Riemannian geometric ap- £~ =N '
proach[7]. In this approach, the trajectory of a dynamical whereh andG are defined as
system can be viewed as a geodesic on the Riemannian
manifold endowed with a suitable metric. The stability of the
trajectory is connected to the curvature of the manifold onf we have a region wher6 is negative in Eq(3), A_ be-
which the trajectory is defined. Especially the sectional curcomes negative. For this negative eigenvalue the perturba-
vature plays a central role to determine the local instabilitytion ¢ _grows exponentially with time because of
of trajectories. The usefulness of this approach has been CoBrexp(y—\t) =exp(V|A_|t). In this case the system exhibits an

exponential instability. The TB criterion claims that the onset
of chaos starts at the threshold energy determine@59 in
*Electronic address: kawabe@design.kyushu-u.ac.jp Eq. (4). Since the expression & is the same as the numera-

fhe perturbatiorg to the trajectoryg’ evolves under the tan-
gent dynamics equation as

h=my;+myy, G =myMmyy— My, (4)
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tor of the Gaussian curvature of the potential functigrihe D2J
quantity G has the same sign as the Gaussian curvature. D2 +(R(J,v)v,J) =0, (8)
Hereafter we callG the Gaussian curvature tersely. o
The ITB criterion comes from the empirical fact that cha- where (X,Y)=g;X'Y! stands for a scalar product. It is well
otic motion can be triggered by the trajectory diverging inknown that once the sectional curvature is introduced this
the direction perpendicular to the flow in phase sg&eln  norm equation can be transformed to a generalized Hill equa-
other words, if the motion for some time sweeps across théon of the form(11) or (13) as will be shown below. For
region where the curvature of the potential surface is negathese derivations we follow the procedure presented in Ref.
tive, we ultimately observe that the motion becomes chaoti¢5] although we can find similar manipulation in many stan-
at longer periods. dard books of the Riemannian geomef0]. The second
To formulate the curvature appropriate for describing sucherm of Eq.(8) is written by the sectional curvatut€ as
a motion, it is convenient to introduce a set of coordinates _ 2
(z,z,) which moves with the trajectory, whergandz, are (RU,0)v,9) = K(J,0)((3,9){v,0) = (J.0)%). ©)
parallel and transverse to an arbitrary direction of flow, re-By noting thatJ is orthogonal tov, i.e., (J,v)=0, and the
spectively. The coordinate, is related to the coordinates condition of (v,v)=1, we can derive from Eq8) the fol-
(d1,92) by lowing equation as

2 2 2
z, =-(Q,Sind+q,cosd, (5) 1d [N} K(J. o)l 2_<d||3||> -0 10
where 6 is the angle betweeq, andz. Thus the curvature
g 0 Z T,

perpendicular to the direction of the flow can be described byvhere||J||: v

the quantityd®v/dZ . This quantity is calculated as From Eq.(10) we arrive at the norm equation describing
the evolution of the nornjJ|| as

d?V(ay, 9 2
(2) — = T ALY i _ i d4|J
V2 = iz My Sir? 6+ my, cos’ #— My, sin 26, stz_H +K(@J,0)|J]=0, (11
©® where the sectional curvatukgJ,v) is given by
wheremy; is the element of the stability matrix in E). J* dg 37 dqt
Since the curvatur¥? is defined in the direction perpen- K(J,v) =R e (12

VA .
dicular to the motion, the empirical fact mentioned above is 9 ds I ds
characterized by the conditio® <0. Indeed it has been Up to this point the results are independent of choice of the
numerically shown that the chaotic degree of the Hénonmetric.

Heiles system increases with the amount of such negative Here we use the Eisenhart metric. This metric allows that
region. Based on these observations it is proposedfas  the arc lengthds is parametrized byls’=C?dt? with C a

a more precise indicator of chaos th@nused in the TB  constant and the physical tinbés by q°=t. Under this metric
criterion. In other words, the ITB criterion claims that the the nonvanishing component &,,., in Eq. (12) is Rigjo
onset of chaos depends on the measure of the region witilone, which equalsn; in Eq. (2), and thenRigo(dg’/ds)
negativeV'?. X (do/ds)=my;/C2. Since the first term of the Jacobi equa-

From now, let us try to show that the quanty® is  tion (11) becomesi?|J||/C%d®, Eq.(11) can be finally rewrit-
closely related to the sectional curvature of a Riemanniafgen as follows
manifold whose sign is relevant for the stability of a geode-

2
sic. In the Riemannian geometric approdeii0], the stabil- d?J| +K@J| =0, (19
ity of a geodesic flow is studied by means of the Jacobi dt?
equation as where the sectional curvatukd? is defined as
D% J g
— +RJ,v)v =0, (7) K@ =m — (14)
bs ol

wheres is the proper timeR(-, -) is the Riemannian curva- It should be noticed here that the sectional curvali®

ture tensorD/Ds is the covariant derivative along the geo- becqmes a simple expressltﬁM) owing to the Eisenhart

desic andv=dg/ds is the velocity of the geodesic. This MEtric. For_thel tvvo-d|meZnS|onaI Hamiltonian systeffs9)]

equation comes from the second-order variation of the gedl€ can assigd-=p, andJ*=-p, to thezcomponents af of

desic equation with respect to a perturbed geodesic. Thus EEJ- (14). Thus the sectional curvatuké? of Eq. (14) can be

(7) describes the evolution of a vector fieldcalled the Ja-  Written as

cobi field or the geodesic variation field, which measures the 1

spread between nearby geodesics. K@(p,q) = 5 (Myyp5 + mypf — 2mipipy),  (15)
In order to clarify the meaning of? in Eq. (6), by mul- P

tiplying Eg. (7) by J we consider its scalar version, i.e., the where p2:p'f+ pg and the relation ofm;,=my, is used. By

norm equation, as follows: using the relation ap;=p cosd and p,=p sin §, we can fi-
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nally show thak® of Eq. (15) is the same expression®$  fact that the norm|J| in Eq. (13) grows with time when

of Eq. (6). In other words, the quantity® proposed empiri- K@ <0 and then the region of the phase space WtR

cally in Ref.[6] is nothing but the sectional curvatuf® of <0 becomes inevitably unstable. Since concrete formula of
the Jacobi equatiofv) when the Eisenhart metric is used. If the indicator in the ITB criterion was not explicitly presented
K@ <0 the nearby geodesics starting out parallel tend tan Ref. [6], it will be worth pointing out that the indicator
diverge, while ifK®@>0 they tend to converge. Thus the (17) is available for the ITB criterion also.

sign of the curvaturd'? is relevant for the stability of a Finally, we would like to discuss the reason why the quan-
g(ezt))de5|_c. This fact is r_eflected in the instability condltlontity (17) in the Riemannian geometric approach plays a role
Vi¥<0in the ITB criterion. In conclusion, we have shown ¢ e giobal indicator, whose base has not been seriously
that the ITB criterion is understood from the viewpoint of the addressed so far. For this end, we use the formula connecting

Riemannian geometry and its empirical indicator of chaos
V2| is exactly the same as the sectional curvakifeéin the EQEKS entropys o the Lyapunov exponents as follows

Jacobi equation with the Eisenhart metric.

Let us briefly comment on our results. First, we would
like to show that the sectional curvatuké? of Eq. (15) —
explains the reason why the TB criterion sometimes fails to hks=AL(E)r(B), (18
predict the threshold energy for the onset of chaos. For this

purpose, it should be noticed that the expression of(Es). — ) )
or Eq.(6) can be rewritten as where\, is the average value of . Herer is the relative

—_— weight of the chaotic part of the energy shell defined as
K@ =V@=h+h?-Gsin(26+ ¢), (16) g P ¥

whereh and G are defined by Eq(4) and ¢=arctaf(m;,

—my,,)/2my,]. The TB criterion is based on the sign@f Wt_e J dpdgX(p,q) S(H(p,q) - E)
can understand the reason of the defect in the TB criterion by _

considering the inclusive relation betwe€nandK®@ in Eq. r(E) =
(16). For the criterion of chaos, the ITB imposes the condi- f dpdqs(H(p,q) — E)
tion K@ <0 while the TB imposes the conditicB<O0. It is

obvious from Eq(16) thatK® >0 holds forG>0 because

the conditionh> 0 is satisfied for the usual Hamiltonian sys- . - . .
tems. This means that the stable condition of the TB Cri,[eyvherex is the characteristic function depending on the value

rion, G>0, is a sufficient condition foK®>0, i.e., G of A, ata point(p,q) in the phase space as follows=1 for

>00 K@>0. Its contraposition is th&t? <00 G<O0. In AL >0 while X=0 for A\ =0. From the definition of in Eqg.

other WordS’G<0 does not necessar”y |mpK((2)<O This (19) we can eXpeCt that the behavior ofwill Closely re-

fact allows the TB criterion of chaos3<0, to have two ~semble that ofK(Z)) in Eq. (17). Indeed, it has been numeri-

cases:(i) G<0 andK'®<0, and (i) G<0 andK'?>0. cally shown that both quantitiasand(Kg)Q exhibit almost

Thus the defect in the TB criterion appears when the Gase ) ) @ _

occurs dominantly. the same behavid9], i.e., rz|<K(_)>|. Thus we obtain the
Second, owing to the equivalence W2 and K@, we  relation from Eq.(18) as follows

would like to point out that the global indicator of chaos in

the Riemannian geometric approach can be used for the ITB

criterion. In this geometric approach to the Hamiltonian sys- hks =~ ;(E)|<K§§))>|. (20)

temH(p,q), the global indicator is assumed to be the micro-

canonical average of the local sectional curvatifé as

follows Since the KS entropliks characterizes the global property of
dynamical systems, the relatid@0) strongly suggests that
f dpdg® (- K®)K@(p,q)8(H(p,q) - E) (Kfi) is qualified to be a global indicator of chaos. Although
, it is difficult to verify rigorously whether the relatiof20)
Jdpdqé(H(p,q) -E) holds in general for the two-dimensional Hamiltonian sys-
tems, the numerical results for several dynamical systems
(17) [5,8,9] seem to support the relatid@0).

: (19

(K=

where O is the step function, i.e®(x)=0 for x<0 while | would like to thank Tohru Hada, Hirokazu Fujisaka, and
0O(x)=1 for x=0. The quantity(K@) is motivated by the Hazime Mori for many helpful discussions.
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