
Indicator of chaos based on the Riemannian geometric approach

Tetsuji Kawabe*
Physics Department, Department of Acoustic Design, Kyushu University, Shiobaru, Fukuoka, 815-8540, Japan

sReceived 13 May 2004; published 12 January 2005d

Using the Riemannian geometric approach to Hamiltonian systems, we show that the empirical indicator of
chaos proposed by Kosloff and RicefJ. Chem. Phys.74, 1947s1981dg, an improved version of the well-known
Toda-Brumer criterion, is equivalent to sectional curvature of the Jacobi equation when the Eisenhart metric is
chosen for the Riemannian manifold. Further, we present a relation among the sectional curvature, the
Lyapunov exponents, and the Kolmogorov-Sinai entropy. By using this relation, the empirical indicator by
Kosloff and Rice, which is local, can be used as a global indicator of chaos.
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A study on the stability of dynamical systems has been
extensively done to find the methods and the criteria for
determining the onset of chaotic motion in the Hamiltonian
system since the pioneer work by Todaf1g and Brumerf2g.
The Toda-BrumersTBd criterion for the onset of chaos is
based on local instability due to separation of neighboring
trajectories in phase space. The instability of these trajecto-
ries relates closely to the sign of the Gaussian curvature of
the potential function of the systemf1g. Owing to its sim-
plicity, this criterion has been widely used to predict the
critical value for intramolecular energy transferf2g and sev-
eral chemical systemsf3g in chemical dynamics as well as
the threshold energy for the onset of chaos in dynamical
systemsf4,5g. However it is also known that the TB criterion
sometimes fails to correctly predict these values.

In order to remove this defect in the TB criterion, it is
necessary to impose stronger conditions to specify the trajec-
tories responsible for chaotic motion. Based on the observa-
tion that chaotic motion occurs by the trajectory which di-
verges in the direction perpendicular to the flow in phase
space, which is found by the analysis of the Hénon-Heiles
system, Kosloff and Rice have proposed an empirical indi-
cator of chaos, i.e., an improved version of the Toda-Brumer
criterion f6g. This improved TBsITBd criterion seems to be
very effective for two-dimensional Hamiltonian systems to
obtain the precise information about the onset of chaos. The
degree of chaos is characterized by the quantity related to the
curvature of the potential energy surface perpendicular to the
trajectory. The ITB criterion is, however, introduced in an
empirical way so that its base is not clear from the viewpoint
of both physics and mathematics.

Recently there has been much attention to investigation
about Hamiltonian chaos from the Riemannian geometric ap-
proachf7g. In this approach, the trajectory of a dynamical
system can be viewed as a geodesic on the Riemannian
manifold endowed with a suitable metric. The stability of the
trajectory is connected to the curvature of the manifold on
which the trajectory is defined. Especially the sectional cur-
vature plays a central role to determine the local instability
of trajectories. The usefulness of this approach has been con-

firmed for the two-dimensional Hamiltonian systems such as
the Hénon-Heiles systemf5g, the homogeneous Yang-Mills-
Higgs systemf8g and the Abelian-Higgs systemf9g.

The purpose of this paper is to show that the ITB criterion
can be understood from the framework of the Riemannian
geometric approach. Indeed, it is shown that the indicator of
chaos used in the ITB criterion is equivalent to the sectional
curvature of the Jacobi equation in the Riemannian geomet-
ric approach when the Eisenhart metric is chosen. From this
equivalence we can explain the reason why the original TB
criterion does not necessarily work well. Furthermore, we
point out an interesting relation among the sectional curva-
ture, the Lyapunov exponents and the Kolmogorov-Sinai
sKSd entropy that connects the ITB criterion to a global in-
dicator of chaos.

Let us start by briefly reviewing the TB criterionf1,2g,
which is derived by the analysis of the linear stability of
trajectories. For the Newtonian system with two degrees of
freedom as

d2qi

dt2
= −

]Vsqd
]qi si = 1,2d, s1d

the perturbationji to the trajectoryqi evolves under the tan-
gent dynamics equation as

d2ji

dt2
+ mijj

j = 0, mij =
]2V

]qi]qj , s2d

whereV is the potential energy function of the system. The
stability of the motion is determined by the eigenvalues of
the stability matrix with elementsmij . The eigenvalues are

l± = h ± Îh2 − G, s3d

whereh andG are defined as

h = m11 + m22, G = m11m22 − m12m21. s4d

If we have a region whereG is negative in Eq.s3d, l− be-
comes negative. For this negative eigenvalue the perturba-
tion ji grows exponentially with time because ofj
~expsÎ−ltd=expsÎul−utd. In this case the system exhibits an
exponential instability. The TB criterion claims that the onset
of chaos starts at the threshold energy determined byG=0 in
Eq. s4d. Since the expression ofG is the same as the numera-*Electronic address: kawabe@design.kyushu-u.ac.jp
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tor of the Gaussian curvature of the potential functionV, the
quantity G has the same sign as the Gaussian curvature.
Hereafter we callG the Gaussian curvature tersely.

The ITB criterion comes from the empirical fact that cha-
otic motion can be triggered by the trajectory diverging in
the direction perpendicular to the flow in phase spacef6g. In
other words, if the motion for some time sweeps across the
region where the curvature of the potential surface is nega-
tive, we ultimately observe that the motion becomes chaotic
at longer periods.

To formulate the curvature appropriate for describing such
a motion, it is convenient to introduce a set of coordinates
szi ,z'd which moves with the trajectory, wherezi andz' are
parallel and transverse to an arbitrary direction of flow, re-
spectively. The coordinatez' is related to the coordinates
sq1,q2d by

z' = − q1 sinu + q2 cosu, s5d

whereu is the angle betweenq1 and zi. Thus the curvature
perpendicular to the direction of the flow can be described by
the quantityd2V/dz'

2 . This quantity is calculated as

Vs2d ;
d2Vsq1,q2d

dz'
2 = m11 sin2 u + m22 cos2 u − m12 sin 2u,

s6d

wheremij is the element of the stability matrix in Eq.s2d.
Since the curvatureVs2d is defined in the direction perpen-

dicular to the motion, the empirical fact mentioned above is
characterized by the conditionVs2d,0. Indeed it has been
numerically shown that the chaotic degree of the Hénon-
Heiles system increases with the amount of such negative
region. Based on these observations it is proposed thatVs2d is
a more precise indicator of chaos thanG used in the TB
criterion. In other words, the ITB criterion claims that the
onset of chaos depends on the measure of the region with
negativeVs2d.

From now, let us try to show that the quantityVs2d is
closely related to the sectional curvature of a Riemannian
manifold whose sign is relevant for the stability of a geode-
sic. In the Riemannian geometric approachf7,10g, the stabil-
ity of a geodesic flow is studied by means of the Jacobi
equation as

D2J

Ds2 + RsJ,vdv = 0, s7d

wheres is the proper time,Rs· , ·d is the Riemannian curva-
ture tensor,D /Ds is the covariant derivative along the geo-
desic andv=dq/ds is the velocity of the geodesic. This
equation comes from the second-order variation of the geo-
desic equation with respect to a perturbed geodesic. Thus Eq.
s7d describes the evolution of a vector fieldJ called the Ja-
cobi field or the geodesic variation field, which measures the
spread between nearby geodesics.

In order to clarify the meaning ofVs2d in Eq. s6d, by mul-
tiplying Eq. s7d by J we consider its scalar version, i.e., the
norm equation, as follows:

KD2J

Ds2 ,JL + kRsJ,vdv,Jl = 0, s8d

where kX,Yl=gijX
iYj stands for a scalar product. It is well

known that once the sectional curvature is introduced this
norm equation can be transformed to a generalized Hill equa-
tion of the form s11d or s13d as will be shown below. For
these derivations we follow the procedure presented in Ref.
f5g although we can find similar manipulation in many stan-
dard books of the Riemannian geometryf10g. The second
term of Eq.s8d is written by the sectional curvatureK as

kRsJ,vdv,Jl = KsJ,vdskJ,Jlkv,vl − kJ,vl2d. s9d

By noting thatJ is orthogonal tov, i.e., kJ ,vl=0, and the
condition of kv ,vl=1, we can derive from Eq.s8d the fol-
lowing equation as

1

2

d2iJi2

ds2 + KsJ,vdiJi2 − SdiJi
ds

D2

= 0, s10d

whereiJi=ÎkJ ,Jl.
From Eq.s10d we arrive at the norm equation describing

the evolution of the normiJi as

d2iJi
ds2 + KsJ,vdiJi = 0, s11d

where the sectional curvatureKsJ ,vd is given by

KsJ,vd = Rmnlh

Jm

iJi
dqn

ds

Jh

iJi
dql

ds
. s12d

Up to this point the results are independent of choice of the
metric.

Here we use the Eisenhart metric. This metric allows that
the arc lengthds is parametrized byds2=C2dt2 with C a
constant and the physical timet is by q0= t. Under this metric
the nonvanishing component ofRmnlh in Eq. s12d is Ri0j0
alone, which equalsmij in Eq. s2d, and thenRi0j0sdq0/dsd
3sdq0/dsd=mij /C

2. Since the first term of the Jacobi equa-
tion s11d becomesd2iJi /C2dt2, Eq.s11d can be finally rewrit-
ten as follows

d2iJi
dt2

+ Ks2diJi = 0, s13d

where the sectional curvatureKs2d is defined as

Ks2d = mij
Ji

iJi
Jj

iJi
. s14d

It should be noticed here that the sectional curvatures12d
becomes a simple expressions14d owing to the Eisenhart
metric. For the two-dimensional Hamiltonian systemsf5,9g
we can assignJ1=p2 andJ2=−p1 to the components ofJ of
Eq. s14d. Thus the sectional curvatureKs2d of Eq. s14d can be
written as

Ks2dsp,qd =
1

p2sm11p2
2 + m22p1

2 − 2m12p1p2d, s15d

where p2=p1
2+p2

2 and the relation ofm12=m21 is used. By
using the relation asp1=p cosu and p2=p sinu, we can fi-
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nally show thatKs2d of Eq. s15d is the same expression asVs2d

of Eq. s6d. In other words, the quantityVs2d proposed empiri-
cally in Ref.f6g is nothing but the sectional curvatureKs2d of
the Jacobi equations7d when the Eisenhart metric is used. If
Ks2d,0 the nearby geodesics starting out parallel tend to
diverge, while if Ks2d.0 they tend to converge. Thus the
sign of the curvatureKs2d is relevant for the stability of a
geodesic. This fact is reflected in the instability condition
Vs2d,0 in the ITB criterion. In conclusion, we have shown
that the ITB criterion is understood from the viewpoint of the
Riemannian geometry and its empirical indicator of chaos,
Vs2d, is exactly the same as the sectional curvatureKs2d in the
Jacobi equation with the Eisenhart metric.

Let us briefly comment on our results. First, we would
like to show that the sectional curvatureKs2d of Eq. s15d
explains the reason why the TB criterion sometimes fails to
predict the threshold energy for the onset of chaos. For this
purpose, it should be noticed that the expression of Eq.s15d
or Eq. s6d can be rewritten as

Ks2d = Vs2d = h + Îh2 − G sins2u + fd, s16d

where h and G are defined by Eq.s4d and f=arctanfsm11
−m22d /2m12g. The TB criterion is based on the sign ofG. We
can understand the reason of the defect in the TB criterion by
considering the inclusive relation betweenG andKs2d in Eq.
s16d. For the criterion of chaos, the ITB imposes the condi-
tion Ks2d,0 while the TB imposes the conditionG,0. It is
obvious from Eq.s16d that Ks2d.0 holds forG.0 because
the conditionh.0 is satisfied for the usual Hamiltonian sys-
tems. This means that the stable condition of the TB crite-
rion, G.0, is a sufficient condition forKs2d.0, i.e., G
.0⇒Ks2d.0. Its contraposition is thatKs2d,0⇒G,0. In
other words,G,0 does not necessarily implyKs2d,0. This
fact allows the TB criterion of chaos,G,0, to have two
cases:sid G,0 and Ks2d,0, and sii d G,0 and Ks2d.0.
Thus the defect in the TB criterion appears when the casesii d
occurs dominantly.

Second, owing to the equivalence ofVs2d and Ks2d, we
would like to point out that the global indicator of chaos in
the Riemannian geometric approach can be used for the ITB
criterion. In this geometric approach to the Hamiltonian sys-
temHsp,qd, the global indicator is assumed to be the micro-
canonical average of the local sectional curvatureKs2d as
follows

kKs−d
s2dl =

E dpdqQs− Ks2ddKs2dsp,qdd„Hsp,qd − E…

E dpdqd„Hsp,qd − E…

,

s17d

where Q is the step function, i.e.,Qsxd=0 for x,0 while
Qsxd=1 for xù0. The quantitykKs−d

s2dl is motivated by the

fact that the normiJi in Eq. s13d grows with time when
Ks2d,0 and then the region of the phase space withKs2d

,0 becomes inevitably unstable. Since concrete formula of
the indicator in the ITB criterion was not explicitly presented
in Ref. f6g, it will be worth pointing out that the indicator
s17d is available for the ITB criterion also.

Finally, we would like to discuss the reason why the quan-
tity s17d in the Riemannian geometric approach plays a role
of the global indicator, whose base has not been seriously
addressed so far. For this end, we use the formula connecting
the KS entropyhKS to the Lyapunov exponentslL as follows
f11g

hKS= l̄LsEdrsEd, s18d

where l̄L is the average value oflL. Here r is the relative
weight of the chaotic part of the energy shell defined as

rsEd =
E dpdqXsp,qdd„Hsp,qd − E…

E dpdqd„Hsp,qd − E…

, s19d

whereX is the characteristic function depending on the value
of lL at a pointsp,qd in the phase space as follows:X=1 for
lL.0 while X=0 for lL=0. From the definition ofr in Eq.
s19d we can expect that the behavior ofr will closely re-
semble that ofkKs−d

s2dl in Eq. s17d. Indeed, it has been numeri-

cally shown that both quantitiesr and kKs−d
s2dl exhibit almost

the same behaviorf9g, i.e., r <ukKs−d
s2dlu. Thus we obtain the

relation from Eq.s18d as follows

hKS< l̄sEdukKs−d
s2dlu. s20d

Since the KS entropyhKS characterizes the global property of
dynamical systems, the relations20d strongly suggests that
kKs−d

s2dl is qualified to be a global indicator of chaos. Although

it is difficult to verify rigorously whether the relations20d
holds in general for the two-dimensional Hamiltonian sys-
tems, the numerical results for several dynamical systems
f5,8,9g seem to support the relations20d.
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